首页 > 玄幻魔法 > 数学大帝 > 第二百六十二章 卡塔朗数

第二百六十二章 卡塔朗数(2/2)

目录
好书推荐: 豆腐村 女团姐妹 陛下,奇观误国啊! 名侦探世界里的刑警 万灵求渡 仙帝的自我修养 阴阳绣师 武极镇神 末世来信 邪尊大人稳健依旧

卡塔朗开始思考用0代表身边带5角钱的人,1代表带1元钱的人,则本问题即可变成:有n个0和n个1,问有多少种排列方法,使排成的0、1序列里,任意前i(i可从1变到2n)个数字中,0的个数总不少于1的个数,此性质称为前束性质。

卡塔朗开始画图,发现把0看作向右走一步,把1看作向上走一步,则很明显,n个0和n个1所组成的序列将和图中从原点(0,0)到点(n,n)的递增路径是一一对应的。于是,我们只要计算路径的条数就行了。

很快卡塔朗找到了一个公式计算排队的方法,如果是有n个5角和n个1元的人的排队,则有(2n)!/(n!(n+1)!)个办法。

如果是有1个人排队是1个办法,2个人排队则是1个办法,3个人排队是2个办法。此后的4、5、6、7、8、9、10个人排队分别有5,14,42,132,429,1430,4862种办法。

卡塔朗数是一个组合数,一些组合计数问题可以归结为解下列形式的递归关系:un=u1un-1+u2un-2+…+un-1u1,n≥2,且u1=1,它的解un称为卡塔朗数。

一般认为这种数是由比利时数学家卡塔朗在1838年首先提出的,但后来有人指出,实际上大数学家欧拉早在1758年就已认识到它了。

我国内蒙古师范大学罗见今副教授以大量的史料论证,所谓“卡塔朗数”的首创者其实并非欧洲人,而是我国清朝的蒙古族学者明安图(1692~1763)。他的发现早于欧拉,比卡塔朗的发现,几乎早了一百年。

目录
新书推荐: 神级刺客,我有一支动物杀手队 助你修行说我废,离婚返还百万倍! 骑砍之挽天倾 从家族种田到土德星君 高武:我的体内有棵天赋树 玄幻:我继承了六十万两杀身祸 洪荒:我,先天葫芦藤,开局暴打三清! 仙武大唐:我的游戏角色成真了 艾泽拉斯之光铸奎尔萨拉斯 洪荒:穿越成河,时空长河也是河
返回顶部